Explication de routine 18-MAVLink->mavlink_apriltags_landing_target Le drone réalise un atterrissage à point fixe d'avriltag via mavlink
# 无人机通过mavlink实现apriltag定点降落例程
#
# 这个脚本使用MAVLink协议发送监测到的AprilTag信息到 ArduPilot / PixHawk控制器,使用OpenMV Cam精确着陆。
#
# P4 = TXD
import math
import sensor
import struct
import time
import machine
UART_BAUDRATE = 115200
MAV_system_id = 1
MAV_component_id = 0x54
packet_sequence = 0
lens_mm = 2.8 # 标配镜头。
lens_to_camera_mm = 22 # 标配镜头。
sensor_w_mm = 4.592 # 用于OV5650感光元件 ov7725 - 3.984 请参见数据手册
sensor_h_mm = 3.423 # 用于OV5650感光元件 ov7725 - 2.952 请参见数据手册
# 下面字典中只有标签ID的标签才会被此代码接受。您可以添加尽可能多的标签ID到下面的字典
# 对于每个标签ID,您需要提供黑色标签边界的长度(毫米)。标签黑色边框正方形的任何一边将工作。
valid_tag_ids = {
0: 165, # 8.5" x 11" tag black border size in mm
1: 165, # 8.5" x 11" tag black border size in mm
2: 165, # 8.5" x 11" tag black border size in mm
}
# 相机的设置
sensor.reset()
sensor.set_pixformat(sensor.GRAYSCALE)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time=2000)
x_res = 160 # QQVGA
y_res = 120 # QQVGA
f_x = (lens_mm / sensor_w_mm) * x_res
f_y = (lens_mm / sensor_h_mm) * y_res
c_x = x_res / 2
c_y = y_res / 2
h_fov = 2 * math.atan((sensor_w_mm / 2) / lens_mm)
v_fov = 2 * math.atan((sensor_h_mm / 2) / lens_mm)
def translation_to_mm(translation, tag_size):
# translation的单位是分米…
return ((translation * 100) * tag_size) / 210
# 链接设置
uart = machine.UART(3, UART_BAUDRATE, timeout_char=1000)
# https://github.com/mavlink/c_library_v1/blob/master/checksum.h
def checksum(data, extra):
output = 0xFFFF
for i in range(len(data)):
tmp = data[i] ^ (output & 0xFF)
tmp = (tmp ^ (tmp << 4)) & 0xFF
output = ((output >> 8) ^ (tmp << 8) ^ (tmp << 3) ^ (tmp >> 4)) & 0xFFFF
tmp = extra ^ (output & 0xFF)
tmp = (tmp ^ (tmp << 4)) & 0xFF
output = ((output >> 8) ^ (tmp << 8) ^ (tmp << 3) ^ (tmp >> 4)) & 0xFFFF
return output
MAV_LANDING_TARGET_message_id = 149
MAV_LANDING_TARGET_min_distance = 1 / 100 # in meters
MAV_LANDING_TARGET_max_distance = 10000 / 100 # in meters
MAV_LANDING_TARGET_frame = 8 # MAV_FRAME_BODY_NED
MAV_LANDING_TARGET_extra_crc = 200
# http://mavlink.org/messages/common#LANDING_TARGET
# https://github.com/mavlink/c_library_v1/blob/master/common/mavlink_msg_landing_target.h
def send_landing_target_packet(tag, dist_mm, w, h):
global packet_sequence
temp = struct.pack(
"<qfffffbb",
0,
((tag.cx() / w) - 0.5) * h_fov,
((tag.cy() / h) - 0.5) * v_fov,
min(
max(dist_mm * 0.001, MAV_LANDING_TARGET_min_distance),
MAV_LANDING_TARGET_max_distance,
),
0.0,
0.0,
0,
MAV_LANDING_TARGET_frame,
)
temp = struct.pack(
"<bbbbb30s",
30,
packet_sequence & 0xFF,
MAV_system_id,
MAV_component_id,
MAV_LANDING_TARGET_message_id,
temp,
)
temp = struct.pack(
"<b35sh", 0xFE, temp, checksum(temp, MAV_LANDING_TARGET_extra_crc)
)
packet_sequence += 1
uart.write(temp)
# LED 控制
led_success = machine.LED("LED_GREEN")
led_fail = machine.LED("LED_RED")
led_counter = 0
def update_led(target_found):
global led_counter
if target_found:
led = led_success
led_fail.off()
else:
led = led_fail
led_success.off()
if led_counter % 4 == 0:
led.toggle()
led_counter += 1
# 主循环
clock = time.clock()
while True:
clock.tick()
img = sensor.snapshot()
tags = sorted(
img.find_apriltags(fx=f_x, fy=f_y, cx=c_x, cy=c_y),
key=lambda x: x.w() * x.h(),
reverse=True,
)
target_found = False
if tags and (tags[0].id() in valid_tag_ids):
target_found = True
tag_size = valid_tag_ids[tags[0].id()]
dist_mm = math.sqrt(
translation_to_mm(tags[0].x_translation(), tag_size) ** 2
+ translation_to_mm(tags[0].y_translation(), tag_size) ** 2
+ translation_to_mm(tags[0].z_translation(), tag_size) ** 2
)
send_landing_target_packet(tags[0], dist_mm, img.width(), img.height())
img.draw_rectangle(tags[0].rect())
img.draw_cross(tags[0].cx(), tags[0].cy())
print("Distance %f mm - FPS %f" % (dist_mm, clock.fps()))
else:
print("FPS %f" % clock.fps())
update_led(target_found)
Explicación de la función del documento oficial chino de Singtown Technology OpenMV: