Explication de la routine 18-MAVLink->mavlink_opticalflow réalise le flux optique via mavlink
# 通过mavlink实现光流
#
# 该脚本使用MAVLink协议向ArduPilot / PixHawk控制器发送光流检测,以使用您的OpenMV Cam进行位置控制。
#
# P4 = TXD
import sensor
import struct
import time
import machine
UART_BAUDRATE = 115200
MAV_system_id = 1
MAV_component_id = 0x54
packet_sequence = 0
# 低于0.1左右(YMMV),结果只是噪音
MAV_OPTICAL_FLOW_confidence_threshold = (0.1)
# LED 控制
led = machine.LED("LED_BLUE")
led_state = 0
def update_led():
global led_state
led_state = led_state + 1
if led_state == 10:
led.on()
elif led_state >= 20:
led.off()
led_state = 0
# 链接设置
uart = machine.UART(3, UART_BAUDRATE, timeout_char=1000)
# https://github.com/mavlink/c_library_v1/blob/master/checksum.h
def checksum(data, extra):
output = 0xFFFF
for i in range(len(data)):
tmp = data[i] ^ (output & 0xFF)
tmp = (tmp ^ (tmp << 4)) & 0xFF
output = ((output >> 8) ^ (tmp << 8) ^ (tmp << 3) ^ (tmp >> 4)) & 0xFFFF
tmp = extra ^ (output & 0xFF)
tmp = (tmp ^ (tmp << 4)) & 0xFF
output = ((output >> 8) ^ (tmp << 8) ^ (tmp << 3) ^ (tmp >> 4)) & 0xFFFF
return output
MAV_OPTICAL_FLOW_message_id = 100
MAV_OPTICAL_FLOW_id = 0 # unused
MAV_OPTICAL_FLOW_extra_crc = 175
# http://mavlink.org/messages/common#OPTICAL_FLOW
# https://github.com/mavlink/c_library_v1/blob/master/common/mavlink_msg_optical_flow.h
def send_optical_flow_packet(x, y, c):
global packet_sequence
temp = struct.pack(
"<qfffhhbb", 0, 0, 0, 0, int(x), int(y), MAV_OPTICAL_FLOW_id, int(c * 255)
)
temp = struct.pack(
"<bbbbb26s",
26,
packet_sequence & 0xFF,
MAV_system_id,
MAV_component_id,
MAV_OPTICAL_FLOW_message_id,
temp,
)
temp = struct.pack("<b31sh", 0xFE, temp, checksum(temp, MAV_OPTICAL_FLOW_extra_crc))
packet_sequence += 1
uart.write(temp)
update_led()
sensor.reset() # 复位并初始化传感器sensor.
sensor.set_pixformat(sensor.RGB565) # 设置图像色彩格式,有RGB565色彩图和GRAYSCALE灰度图两种
sensor.set_framesize(sensor.B64X32) # 设置图像大小为64x32…(或64 x64)…
sensor.skip_frames(time=2000) # 等待设置生效。
clock = time.clock() # 创建一个时钟对象来跟踪FPS帧率。
# 从主帧缓冲区的RAM中取出以分配第二帧缓冲区。
# 帧缓冲区中的RAM比MicroPython堆中的RAM多得多。
# 但是,在执行此操作后,您的某些算法的RAM会少得多......
# 所以,请注意现在摆脱RAM问题要容易得多。
extra_fb = sensor.alloc_extra_fb(sensor.width(), sensor.height(), sensor.RGB565)
extra_fb.replace(sensor.snapshot())
while True:
clock.tick() # 追踪两个snapshots()之间经过的毫秒数.
img = sensor.snapshot() # 拍一张照片,返回图像
displacement = extra_fb.find_displacement(img)
extra_fb.replace(img)
# 没有滤波,偏移结果是嘈杂的,所以我们降低了一些精度
sub_pixel_x = int(-displacement.x_translation() * 35)
sub_pixel_y = int(displacement.y_translation() * 53)
send_optical_flow_packet(sub_pixel_x, sub_pixel_y, displacement.response())
print(
"{0:+f}x {1:+f}y {2} {3} FPS".format(
sub_pixel_x, sub_pixel_y, displacement.response(), clock.fps()
)
)
Explicación de la función del documento oficial chino de Singtown Technology OpenMV: