例程讲解25-Machine-Learning->mnist数字识别
本例程利用mnist数字数据集,自行训练神经网络得到手写数字识别神经网络模型,性能和准确率很高。 在OpenMV4 H7 Plus上面运行大概每秒45帧,在OpenMV4 H7上面运行大概每秒25帧左右。
运行目录前,请将链接中的trained.tflite下载到电脑,并复制到OpenMV的存储中。
中国链接:https://dl.singtown.com/openmv/openmv_tensorflow_training_scripts-main.zip
github链接:https://github.com/SingTown/openmv_tensorflow_training_scripts/tree/main/mnist
# This code run in OpenMV4 H7 or OpenMV4 H7 Plus
import sensor, image, time, os, tf
sensor.reset() # Reset and initialize the sensor.
sensor.set_pixformat(sensor.GRAYSCALE) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA) # Set frame size to QVGA (320x240)
sensor.set_windowing((240, 240)) # Set 240x240 window.
sensor.skip_frames(time=2000) # Let the camera adjust.
clock = time.clock()
while(True):
clock.tick()
img = sensor.snapshot().binary([(0,64)])
for obj in tf.classify("trained.tflite", img, min_scale=1.0, scale_mul=0.5, x_overlap=0.0, y_overlap=0.0):
output = obj.output()
number = output.index(max(output))
print(number)
print(clock.fps(), "fps")
运行结果: