Routine explanation -09-find_rects identifies rectangles
Video tutorial 13 - Shape recognition: https://singtown.com/learn/50009/
Video Tutorial 21 - A car chasing other objects: https://singtown.com/learn/50041/
This routine uses a four-element detection algorithm to identify the rectangle, which is also used to identify AprilTag. Four-element detection algorithm can recognize rectangles of any size and Angle. Function returns a list of rect objects.
rect.corners()
\
Returns a list of four tuples, each representing the four vertices of the
rectangle (x, y). Start at the top left vertex and sort clockwise.
rect.rect()
\
Returns the detected rectangle of the outer rectangle (x, y, w, h).
rect.magnitude()
\
Returns the size of the detected rectangle.
# Find Rects Example
#
# 这个例子展示了如何使用april标签代码中的四元检测代码在图像中找到矩形。 四元检测算法以非常稳健的方式检测矩形,并且比基于Hough变换的方法好得多。 例如,即使镜头失真导致这些矩形看起来弯曲,它仍然可以检测到矩形。 圆角矩形是没有问题的!
# (但是,这个代码也会检测小半径的圆)...
import sensor, image, time
sensor.reset()
sensor.set_pixformat(sensor.RGB565) # 灰度更快(160x120 max on OpenMV-M7)
sensor.set_framesize(sensor.QQVGA)
sensor.skip_frames(time = 2000)
clock = time.clock()
while(True):
clock.tick()
img = sensor.snapshot()
# 下面的`threshold`应设置为足够高的值,以滤除在图像中检测到的具有
# 低边缘幅度的噪声矩形。最适用与背景形成鲜明对比的矩形。
for r in img.find_rects(threshold = 10000):
img.draw_rectangle(r.rect(), color = (255, 0, 0))
for p in r.corners(): img.draw_circle(p[0], p[1], 5, color = (0, 255, 0))
print(r)
print("FPS %f" % clock.fps())
original image:\
The recognition effect is shown as follows:\
Singtown Technology OpenMV official Chinese document function explanation: