Example: 02-Image-Processing/03-Frame-Differencing/on_disk_advanced_frame_differencing.py
# 本作品采用MIT许可证授权。
# 版权所有 (c) 2013-2023 OpenMV LLC。保留所有权利。
# https://github.com/openmv/openmv/blob/master/LICENSE
#
# 高级帧差分示例
#
# 注意:运行此示例需要一张SD卡。
#
# 此示例演示了如何使用OpenMV Cam进行帧差分。此
# 示例是高级的,因为它执行背景更新以处理
# 调整场景背景图像。
import sensor
import os
import time
TRIGGER_THRESHOLD = 5
BG_UPDATE_FRAMES = 50 # 混合前的帧数。
BG_UPDATE_BLEND = 128 # 混合程度...([0-255]对应[0.0-1.0]范围)。
sensor.reset() # 初始化相机传感器。
sensor.set_pixformat(sensor.RGB565) # 或 sensor.RGB565
sensor.set_framesize(sensor.QVGA) # 或传感器.QQVGA(或其他规格)
sensor.skip_frames(time=2000) # 让新设置生效。
sensor.set_auto_whitebal(False) # 关闭白平衡。
clock = time.clock() # 跟踪FPS。
if not "temp" in os.listdir():
os.mkdir("temp") # 创建一个临时目录
print("About to save background image...")
sensor.skip_frames(time=2000) # 给用户时间准备。
sensor.snapshot().save("temp/bg.bmp")
print("Saved background image - Now frame differencing!")
triggered = False
frame_count = 0
while True:
clock.tick() # Track elapsed milliseconds between snapshots().
img = sensor.snapshot() # 拍照并返回图像。
frame_count += 1
if frame_count > BG_UPDATE_FRAMES:
frame_count = 0
# Blend in new frame. We're doing 255-alpha here because we want to
# blend the new frame into the background. Not the background into the
# 新帧 which would be just alpha. Blend replaces each pixel by
# ((NEW*(alpha))+(OLD*(255-alpha)))/255. So, a low alpha results in
# low blending of the new image while a high alpha results in high
# blending of the new image. We need to reverse that for this update.
img.blend("temp/bg.bmp", alpha=(255 - BG_UPDATE_BLEND))
img.save("temp/bg.bmp")
# Replace the image with the "abs(NEW-OLD)" frame difference.
img.difference("temp/bg.bmp")
hist = img.get_histogram()
# This code below works by comparing the 99th percentile value (e.g. the
# non-outlier max value against the 90th percentile value (e.g. a non-max
# value. The difference between the two values will grow as the difference
# image seems more pixels change.
diff = hist.get_percentile(0.99).l_value() - hist.get_percentile(0.90).l_value()
triggered = diff > TRIGGER_THRESHOLD
print(clock.fps(), triggered) # 注意:您的 OpenMV Cam 在连接到
# 计算机时运行速度会减半。断开连接后,FPS 应该会增加。