Example: 03-Machine-Learning/02-Haar-Cascade/face_tracking.py
import sensor
import time
import image
sensor.reset()
sensor.set_contrast(3)
sensor.set_gainceiling(16)
sensor.set_framesize(sensor.VGA)
sensor.set_windowing((320, 240))
sensor.set_pixformat(sensor.GRAYSCALE)
sensor.skip_frames(time=2000)
face_cascade = image.HaarCascade("frontalface", stages=25)
print(face_cascade)
kpts1 = None
while kpts1 is None:
img = sensor.snapshot()
img.draw_string(0, 0, "Looking for a face...")
objects = img.find_features(face_cascade, threshold=0.5, scale=1.25)
if objects:
face = (
objects[0][0] - 31,
objects[0][1] - 31,
objects[0][2] + 31 * 2,
objects[0][3] + 31 * 2,
)
kpts1 = img.find_keypoints(
threshold=10, scale_factor=1.1, max_keypoints=100, roi=face
)
img.draw_rectangle(objects[0])
print(kpts1)
img.draw_keypoints(kpts1, size=24)
img = sensor.snapshot()
time.sleep_ms(2000)
clock = time.clock()
while True:
clock.tick()
img = sensor.snapshot()
kpts2 = img.find_keypoints(
threshold=10, scale_factor=1.1, max_keypoints=100, normalized=True
)
if kpts2:
c = image.match_descriptor(kpts1, kpts2, threshold=85)
match = c[6]
if match > 5:
img.draw_rectangle(c[2:6])
img.draw_cross(c[0], c[1], size=10)
print(kpts2, "matched:%d dt:%d" % (match, c[7]))
img.draw_string(0, 0, "FPS:%.2f" % (clock.fps()))