Example: 02-Image-Processing/03-Frame-Differencing/on_disk_basic_frame_differencing.py
# 本作品采用MIT许可证授权。
# 版权所有 (c) 2013-2023 OpenMV LLC。保留所有权利。
# https://github.com/openmv/openmv/blob/master/LICENSE
#
# Basic Frame Differencing Example
#
# 注意:运行此示例需要一张SD卡。
#
# This example demonstrates using frame differencing with your OpenMV Cam. It's
# called basic frame differencing because there's no background image update.
# So, as time passes the background image may change resulting in issues.
import sensor
import os
import time
TRIGGER_THRESHOLD = 5
sensor.reset() # 初始化相机传感器。
sensor.set_pixformat(sensor.RGB565) # 或 sensor.GRAYSCALE
sensor.set_framesize(sensor.QVGA) # 或传感器.QQVGA(或其他规格)
sensor.skip_frames(time=2000) # 让新设置生效。
sensor.set_auto_whitebal(False) # 关闭白平衡。
clock = time.clock() # 跟踪FPS。
if not "temp" in os.listdir():
os.mkdir("temp") # 创建一个临时目录
print("About to save background image...")
sensor.skip_frames(time=2000) # 给用户时间准备。
sensor.snapshot().save("temp/bg.bmp")
print("Saved background image - Now frame differencing!")
while True:
clock.tick() # Track elapsed milliseconds between snapshots().
img = sensor.snapshot() # 拍照并返回图像。
# Replace the image with the "abs(NEW-OLD)" frame difference.
img.difference("temp/bg.bmp")
hist = img.get_histogram()
# This code below works by comparing the 99th percentile value (e.g. the
# non-outlier max value against the 90th percentile value (e.g. a non-max
# value. The difference between the two values will grow as the difference
# image seems more pixels change.
diff = hist.get_percentile(0.99).l_value() - hist.get_percentile(0.90).l_value()
triggered = diff > TRIGGER_THRESHOLD
print(clock.fps(), triggered) # 注意:您的 OpenMV Cam 在连接到
# 计算机时运行速度会减半。断开连接后,FPS 应该会增加。